{"id":158,"date":"2013-04-02T16:22:14","date_gmt":"2013-04-02T16:22:14","guid":{"rendered":"https:\/\/docneuro.jz7sunfr-liquidwebsites.com\/nernst-equation\/"},"modified":"2013-04-02T16:22:14","modified_gmt":"2013-04-02T16:22:14","slug":"nernst-equation","status":"publish","type":"post","link":"https:\/\/docneuro.com\/nernst-equation\/","title":{"rendered":"Nernst Equation"},"content":{"rendered":"

The Nernst equation describes the voltage across a cell membrane at which there would be no net flow of a particular ion (assuming there are ion channels that passed that ion). This voltage is called any of the following names “reversal potential,” “Nernst potential,” or “equilibrium potential” of an ion.<\/p>\n

<\/p>\n

Form of Equation<\/h3>\n

The Nernst potential (Eion) is the voltage needed to counterbalance the diffusion of a charged ion down its concentration gradient. The potential is therefore a function of the concentration difference ([ion outside] vs. [ion inside]) across the membrane as well as the charge on the ion (z):<\/p>\n

Eion = RT\/zF (ln([ion outside]\/[ion inside]))<\/em><\/p>\n

R is the gas constant (8.314472 J K-1 mol-1) T is temperature in Kelvin (body temperature is 273 + 37 = 310K) z is the charge on the ion (eg., +1 for Na+, +2 for Ca2+, -1 for Cl-) F is Faraday’s constant (9.65\u00d710^4 C mol^-1) [ion outside] = concentration of the ion in the extracellular space [ion inside] = intracellular concentration of the ion<\/p>\n

Simplifying Assumptions for Calculating the Nernst Potential<\/h3>\n

For simplicity’s sake, students often assume “standard conditions” (temperature of 27 deg C) and write the equation with log base 10, rather than a natural log (ln). This makes RT\/F close to 60mV, and the equation can be written:<\/p>\n

Eion = (60\/z) ( log([ion out]) – log([ion in]) )<\/p>\n

Typical Equilibrium Potentials for Common Ions<\/h3>\n

The dominant ions in neurons are Na+, K+, Cl-, Ca2+. It is important to know the equilibrium potentials for each of these ions, and the concentrations inside and outside of the cell.<\/p>\n\n\n\n\n\n\n
Ion<\/td>\n[intracellular] (mM)<\/td>\n[extracellular] (mM)<\/td>\nEquilibrium potential (mV)<\/td>\n<\/tr>\n
Na+<\/td>\n12<\/td>\n145<\/td>\n+64 mV<\/td>\n<\/tr>\n
K+<\/td>\n140<\/td>\n5<\/td>\n-86 mV<\/td>\n<\/tr>\n
Ca2+<\/td>\n0.0001 mM<\/td>\n2 mM<\/td>\nEquilibrium potential not defined<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n

Reference Materials<\/h3>\n

Prof. Francesco Bezanilla of the University of Chicago has an excellent primer on neurophysiology, which includes an animated demonstration of the factors that determine the Nernst potential.<\/p>\n

Medical computing has calculators and explanations for several neurophysiological concepts like the Action potential and Nernst potential.<\/p>\n","protected":false},"excerpt":{"rendered":"

The Nernst equation describes the voltage across a cell membrane at which there would be no net flow of a particular ion (assuming there are ion channels that passed that ion). This voltage is called any of the following names “reversal potential,” “Nernst potential,” or “equilibrium potential” of an ion.<\/p>\n","protected":false},"author":2,"featured_media":0,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"om_disable_all_campaigns":false,"_monsterinsights_skip_tracking":false,"_monsterinsights_sitenote_active":false,"_monsterinsights_sitenote_note":"","_monsterinsights_sitenote_category":0,"footnotes":""},"categories":[21],"tags":[],"aioseo_notices":[],"yoast_head":"\nNernst Equation - DocNeuro<\/title>\n<meta name=\"robots\" content=\"index, follow, max-snippet:-1, max-image-preview:large, max-video-preview:-1\" \/>\n<link rel=\"canonical\" href=\"https:\/\/docneuro.com\/nernst-equation\/\" \/>\n<meta property=\"og:locale\" content=\"en_US\" \/>\n<meta property=\"og:type\" content=\"article\" \/>\n<meta property=\"og:title\" content=\"Nernst Equation - DocNeuro\" \/>\n<meta property=\"og:description\" content=\"The Nernst equation describes the voltage across a cell membrane at which there would be no net flow of a particular ion (assuming there are ion channels that passed that ion). This voltage is called any of the following names “reversal potential,” “Nernst potential,” or “equilibrium potential” of an ion.\" \/>\n<meta property=\"og:url\" content=\"https:\/\/docneuro.com\/nernst-equation\/\" \/>\n<meta property=\"og:site_name\" content=\"DocNeuro\" \/>\n<meta property=\"article:publisher\" content=\"https:\/\/www.facebook.com\/DocNeuro\/\" \/>\n<meta property=\"article:published_time\" content=\"2013-04-02T16:22:14+00:00\" \/>\n<meta name=\"author\" content=\"Naoum P. Issa MD PhD\" \/>\n<meta name=\"twitter:card\" content=\"summary_large_image\" \/>\n<meta name=\"twitter:creator\" content=\"@DocNeuroCom\" \/>\n<meta name=\"twitter:site\" content=\"@DocNeuroCom\" \/>\n<meta name=\"twitter:label1\" content=\"Written by\" \/>\n\t<meta name=\"twitter:data1\" content=\"Naoum P. Issa MD PhD\" \/>\n\t<meta name=\"twitter:label2\" content=\"Est. reading time\" \/>\n\t<meta name=\"twitter:data2\" content=\"2 minutes\" \/>\n<script type=\"application\/ld+json\" class=\"yoast-schema-graph\">{\"@context\":\"https:\/\/schema.org\",\"@graph\":[{\"@type\":\"WebPage\",\"@id\":\"https:\/\/docneuro.com\/nernst-equation\/\",\"url\":\"https:\/\/docneuro.com\/nernst-equation\/\",\"name\":\"Nernst Equation - DocNeuro\",\"isPartOf\":{\"@id\":\"https:\/\/docneuro.com\/#website\"},\"datePublished\":\"2013-04-02T16:22:14+00:00\",\"dateModified\":\"2013-04-02T16:22:14+00:00\",\"author\":{\"@id\":\"https:\/\/docneuro.com\/#\/schema\/person\/cc69814a838a125786f9fd5d07693219\"},\"breadcrumb\":{\"@id\":\"https:\/\/docneuro.com\/nernst-equation\/#breadcrumb\"},\"inLanguage\":\"en-US\",\"potentialAction\":[{\"@type\":\"ReadAction\",\"target\":[\"https:\/\/docneuro.com\/nernst-equation\/\"]}]},{\"@type\":\"BreadcrumbList\",\"@id\":\"https:\/\/docneuro.com\/nernst-equation\/#breadcrumb\",\"itemListElement\":[{\"@type\":\"ListItem\",\"position\":1,\"name\":\"Home\",\"item\":\"https:\/\/docneuro.com\/\"},{\"@type\":\"ListItem\",\"position\":2,\"name\":\"Nernst Equation\"}]},{\"@type\":\"WebSite\",\"@id\":\"https:\/\/docneuro.com\/#website\",\"url\":\"https:\/\/docneuro.com\/\",\"name\":\"DocNeuro\",\"description\":\"Up-to-date concepts in neurology\",\"potentialAction\":[{\"@type\":\"SearchAction\",\"target\":{\"@type\":\"EntryPoint\",\"urlTemplate\":\"https:\/\/docneuro.com\/?s={search_term_string}\"},\"query-input\":\"required name=search_term_string\"}],\"inLanguage\":\"en-US\"},{\"@type\":\"Person\",\"@id\":\"https:\/\/docneuro.com\/#\/schema\/person\/cc69814a838a125786f9fd5d07693219\",\"name\":\"Naoum P. Issa MD PhD\",\"image\":{\"@type\":\"ImageObject\",\"inLanguage\":\"en-US\",\"@id\":\"https:\/\/docneuro.com\/#\/schema\/person\/image\/\",\"url\":\"https:\/\/secure.gravatar.com\/avatar\/ced09a12b75ddb6a89116aa02f598e93?s=96&d=mm&r=g\",\"contentUrl\":\"https:\/\/secure.gravatar.com\/avatar\/ced09a12b75ddb6a89116aa02f598e93?s=96&d=mm&r=g\",\"caption\":\"Naoum P. Issa MD PhD\"},\"url\":\"https:\/\/docneuro.com\/author\/naoum\/\"}]}<\/script>\n<!-- \/ Yoast SEO plugin. -->","yoast_head_json":{"title":"Nernst Equation - DocNeuro","robots":{"index":"index","follow":"follow","max-snippet":"max-snippet:-1","max-image-preview":"max-image-preview:large","max-video-preview":"max-video-preview:-1"},"canonical":"https:\/\/docneuro.com\/nernst-equation\/","og_locale":"en_US","og_type":"article","og_title":"Nernst Equation - DocNeuro","og_description":"The Nernst equation describes the voltage across a cell membrane at which there would be no net flow of a particular ion (assuming there are ion channels that passed that ion). This voltage is called any of the following names “reversal potential,” “Nernst potential,” or “equilibrium potential” of an ion.","og_url":"https:\/\/docneuro.com\/nernst-equation\/","og_site_name":"DocNeuro","article_publisher":"https:\/\/www.facebook.com\/DocNeuro\/","article_published_time":"2013-04-02T16:22:14+00:00","author":"Naoum P. Issa MD PhD","twitter_card":"summary_large_image","twitter_creator":"@DocNeuroCom","twitter_site":"@DocNeuroCom","twitter_misc":{"Written by":"Naoum P. Issa MD PhD","Est. reading time":"2 minutes"},"schema":{"@context":"https:\/\/schema.org","@graph":[{"@type":"WebPage","@id":"https:\/\/docneuro.com\/nernst-equation\/","url":"https:\/\/docneuro.com\/nernst-equation\/","name":"Nernst Equation - DocNeuro","isPartOf":{"@id":"https:\/\/docneuro.com\/#website"},"datePublished":"2013-04-02T16:22:14+00:00","dateModified":"2013-04-02T16:22:14+00:00","author":{"@id":"https:\/\/docneuro.com\/#\/schema\/person\/cc69814a838a125786f9fd5d07693219"},"breadcrumb":{"@id":"https:\/\/docneuro.com\/nernst-equation\/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https:\/\/docneuro.com\/nernst-equation\/"]}]},{"@type":"BreadcrumbList","@id":"https:\/\/docneuro.com\/nernst-equation\/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Home","item":"https:\/\/docneuro.com\/"},{"@type":"ListItem","position":2,"name":"Nernst Equation"}]},{"@type":"WebSite","@id":"https:\/\/docneuro.com\/#website","url":"https:\/\/docneuro.com\/","name":"DocNeuro","description":"Up-to-date concepts in neurology","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https:\/\/docneuro.com\/?s={search_term_string}"},"query-input":"required name=search_term_string"}],"inLanguage":"en-US"},{"@type":"Person","@id":"https:\/\/docneuro.com\/#\/schema\/person\/cc69814a838a125786f9fd5d07693219","name":"Naoum P. Issa MD PhD","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https:\/\/docneuro.com\/#\/schema\/person\/image\/","url":"https:\/\/secure.gravatar.com\/avatar\/ced09a12b75ddb6a89116aa02f598e93?s=96&d=mm&r=g","contentUrl":"https:\/\/secure.gravatar.com\/avatar\/ced09a12b75ddb6a89116aa02f598e93?s=96&d=mm&r=g","caption":"Naoum P. Issa MD PhD"},"url":"https:\/\/docneuro.com\/author\/naoum\/"}]}},"_links":{"self":[{"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/posts\/158"}],"collection":[{"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/users\/2"}],"replies":[{"embeddable":true,"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/comments?post=158"}],"version-history":[{"count":0,"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/posts\/158\/revisions"}],"wp:attachment":[{"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/media?parent=158"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/categories?post=158"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/docneuro.com\/wp-json\/wp\/v2\/tags?post=158"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}